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Abstract. The online object tracking is a challenging problem because
any useful approach must handle various nuisances including illumina-
tion changes and occlusions. Though a lot of work focus on observation
models by employing sophisticated approaches for contaminated data,
they commonly assume that the samples for updating observation model
are uncorrupted or can be restored in updating. For instance, in par-
ticle filter based approaches every particle has to be restored for each
frame, which is time-consuming and unstable. In this paper, we propose
a novel scheme to decouple the observation model and its update in a
particle filtering framework. Our efficient observation model is used to
effectively select the most similar candidate from all particles only, by
analyzing the principal component analysis (PCA) reconstruction with
L1 regularization. In order to handle the contaminated samples while
updating observation model, we adopt on an online robust PCA during
the update of observation model. Our qualitative and quantitative eval-
uations on challenging dataset demonstrate that the proposed scheme is
competitive to several sophisticated state of the art methods, and it is
much faster.

1 Introduction

Visual tracking has been an active topic in computer vision because it is widely
used in many applications such as surveillance, robotics, human computer inter-
action, vehicle tracking, and even medical imaging. In spite of great progress in
last two decades, visual tracking is still an extremely challenging topic because
in the real scenes visual tracker has to face different situations (e.g. sophisticated
object shape or complex motion, illumination changes and occlusions).

The current methods of visual tracking can be categorized into generative or
discriminative ones. The methods based on generative models aim at finding the
most similar region as the target from a lot of candidates, while the methods
based on the discriminative models are modeling the tracking problem as a
classification problem, which build classifiers for distinguishing the target from
the surrounding region of backgrounds. In this paper, we mainly focus on the
visual tracking based on generative models.

Among the trackers based on generative methods, the linear representation
is widely employed in many trackers because it is capable of maintaining holistic
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appearance information and casting generative models (i.e. Gaussian model) as
linear regression. These methods often adopt a dictionary (e.g, a set of basis
vectors from a subspace or a series of templates) to represent the tracked target.
A given candidate sample is linearly represented by the dictionary, and the
representation coefficient and reconstruction error are computed, from which the
corresponding likelihood (the similarity to the expected target) is determined.

Ross et al. proposed an incremental visual tracking(IVT) method [1] which
employs a low dimensional PCA subspace to represent the tracked target and
thus assumes that the error is Gaussian distributed with small variances (i.e.,
small and dense noise). Technically it is equivalent to the ordinary least squares
solution under the assumption that the dictionary atoms are orthogonal, and
the representation of the tracked target is capable of obtaining by inner product
operator. Furthermore, the reconstruction error is also easy to compute. Thus,
the IVT is a potential method for real time applications. While the IVT method
is able to handle appearance changes caused by illumination variation and pose
variation, it is not robust to some challenging environments (e.g. partial oc-
clusion and background clutter) due to the following two reasons. Firstly, the
ordinary least squares method has been shown to be sensitive to outliers due
to the formulation is equivalent to Maximum Likelihood Estimate(MLE) under
Gaussian models. Secondly, the IVT method directly uses new observations to
update the observation model without any intervention such as detecting outliers
and processing them accordingly.

Recently, sparse representation has been successfully employed in classifica-
tion problems in computer vision. Wright et al. [2] reported sparse representation
for face recognition (FR). Such a sparse representation classifier (SRC) firstly
codes the query face image over the dictionary sparsely, and then makes the
classification by checking which class yields the least coding error. This scheme
presents an impressive performance in FR due to the robustness to different
situations (e.g. face expression, illumination changes and occlusion).

Inspired by SRC, many L1 trackers represent a candidate target by a sparse
linear combination of the templates in a dictionary. Benefitting from sparsity
penalty(i.e. L0 norm and L1 norm), these methods demonstrated robustness in
various tracking environments. However, sparsity penalty is a non-differential
function. Therefore these SRC based trackers are quite computationally expen-
sive. In the classical L1 tracker [3], L1 minimization problems need to be solved
by the interior point method [4] for each frame during the tracking process. This
process is very time-consuming not only because L1 minimization is computa-
tionally expensive but also the trivial templates significantly extend the size of
the dictionary. The optimized solution proposed in [5] reduces the number of par-
ticles by a minimal error bounding strategy. Though this strategy is able to save
80% computation. It is still far away from real time applications. Furthermore,
the L1 based trackers commonly select down-sampling particles as templates due
to computational burdens [6], which significantly reduces the tracking accuracy.

Aforementioned L1 based trackers only concern with the robust representa-
tion for observing data and employing raw inputs as “templates”, which may



Fast Inference of Contaminated Data for Real Time Object Tracking 3

be corrupted or contaminated. These methods ignore that corrupted templates
will have significant influences on the observation model because the templates
in the dictionary came from raw observations. Unlike the methods that try to
solve these two problems by using sophisticated appearance models and better
mechanisms of updating model, in this paper we ask two different yet essential
questions. 1) Is it necessary to use sophisticated observation methods to han-
dle corrupted data, such as partial occlusion situation? For example, it is very
computationally expensive if we have to restore hundreds of particles in each
frame) but only need one of them to update the observation model. 2) Is there
an efficient and effective way to update the observation model, without occlusion
detection in the appearance model?

In this paper, we propose to overcome the disadvantage of subspace repre-
sentation by proposing an robust appearance model to deal with heavy occlusion
effectively. We chose the observation model in the IVT to our model, because
IVT performs remarkbly more efficient than L1 tracker in handling higher reso-
lution image observations. During the model update, we propose to use robust
online dictionary learning based method, such as those methods based on Hu-
ber loss function (Wang and Yeung [7]). which remedy the problem of corrupted
samples by obtaining more robust templates. Several experiments on challenging
video sequences validate that the proposed algorithm is efficient and effective for
object-tracking problem.

2 Related work

To facilitate the comparison between different methods, we briefly review the
particle filter models for visual tracking and trackers based on linear representa-
tion. And then some classical trackers based on linear representation (e.g. IVT
and L1 Tracker) are also reviewed briefly.

2.1 Particle filter tracking

In the framework of particle filtering, the problem of object tracking can be
considered as a sequential Bayesian inference. Given a set of observed images
Yt = [y1, y2, ..., yt] at the t-th frame, the hidden state variable xt

p(xt|Y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (1)

where p(xt|xt−1) is the dynamic model between two sequential states, and p(yt|xt)
denotes observation model that estimates the likelihood of observing yt at state
xt. The optimal state of all observing targets is obtained by the maximum a
posteriori estimation over N samples at time t by

x̂t = arg max
xi
t

p(yit|xit)p(xit|xt−1), i = 1, 2, ... (2)

where xit denotes the i-th sample of the state xt, and yit indicates the image
patch estimated by xit.
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Dynamic model The affine warp model is used to model the target motion
between two sequential frames. There are six parameter of the affine transfor-
mation used to model p(xt|xt−1). Let xt = [x1, x2, x3, x4, x5, x6], which de-
note shift in x, y translation, rotation, scale, and shear. Usually, the each di-
mension of p(xt|xt−1) is modeled by an independent Gaussian distribution(i.e.
p(xt|xt−1) = N(xt;xt−1, Ψ), where Ψ is a diagonal covariance matrix).

Observation model based on linear representation The global appearance
of an object under different conditions (e.g. illumination and viewpoint change)
is considered to lie approximately in a low dimensional space. Assume the target
variable y is given by a deterministic function f(T, a) with additive Gaussian
noise as the following equation:

y = Ta+ ε (3)

where tracking result y ∈ Rd approximately lies in the linear span of T and is
the zero mean, we denote the templates set as T = [t1, ..., tn] ∈ Rd×n(d >>
n), containing n target templates such that each template ti ∈ Rd and a =
[a1, a2, ..., an]T ∈ Rn is called a target coefficient vector. ε is the zero mean
Gaussian random noisy term. Therefore, the observeration model is able to be
extend to the following formulation:

p(yit|xit) = N(ε; 0, I) (4)

where I is a diagonal covariance matrix and ε is the residual of linear repre-
sentation. Due to the p(xt|xt−1) drawing N particles from the the previous the
particle of target and then resetting their weights to 1/n, thus the Eq. 2 become
the ordinary least square problem ||y − Ta||22.

2.2 Incremental subspace learning

As a classical method, the incremental tracking method [1] uses online PCA
to update templates which can efficiently handle the problem that appearance
change caused by in-plane rotation, scale, illumination variation and pose change.
However, because of the intrinsic character of the representation based on PCA
subspace, the IVT method is sensitive to partial occlusion, especially large oc-
clusion. In PCA scheme, the underlying assumption is that the noisy term ε
in Eq. 3 is Gaussian distributed with small variance. It is still a ordinary least
square problem. Because of the orthogonality of bases T , the representation a

can be estimated by a = TTY . And the noisy term ‖ε‖22 =
∥∥Y − TTTY ∥∥2

2
.

Commonly, the noisy energy is very small because the PCA will hold the most
variance after transforming input into a subspace. However, when the input is
partly occluded by other objects, the IVT method would be failed in different
conditions with partial occlusions which are non-Gaussian. Additionally, the IVT
directly uses a new observation without any intervention for corruptions. As a
result, it makes the observation model degraded in the situation with partial
situation.
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2.3 Sparsity regularization based tracker

Sparse representation has recently been extensively studied and applied in pat-
tern recognition and computer vision, one of most successful applications is the
sparse representation classification (SRC) in the face recognition problem [2]. In
spite of existing different situations with various occlusion patterns, it always
works well. Inspired by the SRC, Mei et al. [3] propose an algorithm by defining
the tracking problem as finding the patch with minimum reconstruction error
by sparse representation and handling occlusion with trivial templates by:

min
c

1

2
‖y −Bc‖22 + λ ‖c‖1 s.t. c ≥ 0, B = [T I − I], c = [a e] (5)

where y denotes an observer sample, T represents a sub dictionary of target
templates, I indicates identity matrix as trivial template for error representation,
a indicates the corresponding coefficient to target templates and the e is the
coefficients of trivial templates. Commonly, only a few templates are necessary,
whereas a lot of trivial templates are also needed. Therefore, the implementation
make the dictionary too big to efficiently solve.

The Eq. 5 is able to obtain robust coefficients from the corrupted observation.
In order to build a more robust model for object tracking, [7] and [8] propose an
efficient and effective method to estimate different components from residual ε.
They assume that the ε is a combination of Gaussian and Laplacian Distribution.
Thus, they use huber loss function to replace least square function in the sparse
representation or the ordinary least square problem.

f(x) =

{
x2/2, |x| ≤ λ
λ|x| − λ2/2, (otherwise)

(6)

3 The proposed method

Many aforementioned methods employ the detection of pixel level outliers to
solve the problem of degrading models. However, it is not an efficient and effective
way to solve the problem of updating model. In this paper, we seek a different
scheme which exploits a method without any prior about pixel level outliers, and
update the observation model based on corrupted observations. Thus we only
need a simple model which is good enough to estimate likelihood of particles.

3.1 Motivation

The Huber loss function is an efficient method to estimate different components
from residual ε for building a more robust model. It assume that the ε is a
combination of Gaussian and Laplacian distribution and decompose ε into e + s
iteratively. The relationship can be formulated as the following extend version
of Eq.3:

y = Ta+ ε, s.t. ε = e + s (7)
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(a) Distance Comparison

(b) Input and Outlier Detection

Fig. 1. Comparsion between Results with Different Iteration Numbers

where e = [e1, ..., en] is Gaussian noisy and s = [s1, ..., sn] is sparse noisy followed
Laplacian distribution. Thus, the ordinary least square problem using huber loss
function [8] is equivalent to :

E = min
a,s
||y − Ta− s||22 + λ ‖s‖1 (8)

To estimate the e and s, the Eq. 8 needs to repeat two steps: detecting outlier
pixels and then solving ordinary least square function without the influence of
outlier pixels. Commonly, the function needs to repeat these two steps many
times in order to obtain convergence. This method is capable of detecting pixel
level outliers but really expensive in time.

However, in the repeated processes, the cost function (Eq. 8) update is usually
very small. Fig. 1(a) shows a comparison between the cost value E after Iteration
1 and Iteration 8 for 600 particles. It is difficult to distinguish the difference
between both lines. It is obvious to find that the tracking target is the 356-th
particle because it has the lowest E. The 356-th particle and the outlier maps
with different iteration numbers are shown in Fig. 1(b). It is obvious that the
two outlier maps have very similar pattern, where the only difference is small.

Based on this fact, we argue that it is not necessary to use such a sophis-
ticated method like the Huber loss function to exactly calculate which noisy of
pixels are Gaussian or Laplacian distribution. For the sake of saving computa-
tion, we do not estimate these two different components accurately. According
to the prior knowledge, the tiny ε is typically Gaussian distribution while the
large ε is Laplacian distribution. Therefore, we can further simplify an assump-
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tion that the ε is Gaussian distribution below a threshold, otherwise is
Laplacian distribution.

3.2 Observation Model

An image observation yit can be represented by a subspace of the target ob-
ject spanned by T if no occlusion occurs. Thus, many approaches use the re-
constructed residual of each observed image patch to measure the observation
likelihood by minimizing ||yi − Tai||22:

p(yi|xi) = exp(−
∥∥yi −Tai

∥∥2
2
) (9)

where we assume the yi is centring. However, the Eq. 9 do not consider the im-
pact introduced by complex noisy. It is necessary to account for partial occlusion
in an appearance model. In [8], authors assume that a centered image observa-
tion can be represented by a linear combination of the PCA basis vectors and
trivial templates. If partial occlusion occurs, the most likely image patch can be
represented as a linear combination of PCA basis vectors and very few number
of trivial templates (as illustrated by Fig. 1(b)). Thus, the precise localization
of the tracked target can be benefited by penalizing the sparsity of trivial coeffi-
cients. But the problem of sparsity penalty is very computational expensive (i.e.
Eq. 8).

We will propose the method to discriminate the type of noisy term using a
threshold. As shown in Fig. 1(b), this scheme may be not perfect for pixel-wise
occlusion, but it is good enough for the appearance model like Fig. 8. Specifically,
we define a mask indicator M and a penalty vector W to point out Gaussian
and Laplacian parts roughly:

mi =

{
1, |εi| ≤ λ
0, (otherwise)

(10)

where mi is a element of M = [m1,m2, ...,mn], which is a vector that indicates
Gaussian elements of e. The λ is a threshold constant in all experiments of this
paper.

wi =

{
|εi| − λ, |εi| > λ
0, (otherwise)

(11)

where wi is a element of W = [w1, w2, ..., wn], which is a vector that indicates
Laplacian elements of s. Eq. 11 is related to the soft-threshold function using
subgradient (i.e. sgn(x)(abs(x)− λ)) for solving L1 regularization problem [9].

p(yi|xi) = exp(−
∥∥M i � (Y i − Tai)

∥∥2
2
− β

∥∥W i
∥∥
1
) (12)

where � is the Hadamard product (element-wise product), and β is a penalty
term. The first term accounts for reconstruction errors of the unoccluded propor-
tion of the target object, and the second term indicates the impact of occluded
part of the target object.
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3.3 Update of Observation Model

Due to the least square loss function used, PCA is very sensitive to corrupted
and contaminated observations. Even a few such outliers enable the quality of
PCA output to be degraded. Unfortunately, for the tracking problem, outlier
observations are frequent. In [10], researchers propose an online PCA method for
outliers. The mechanism of probabilistic admission and rejection for new samples
endows this method with the ability to be robust to the outliers. Technically, the
method, in wild conditions, can be resistant to 50% breakdown point. However,
this method cannot be employed in tracking problems directly. There are mainly
two problems: ignoring the estimation of the mean vector and storing a full
covariance matrix. The former is necessary for updating the appearance model.
The latter one makes the method has to store a 1024×1024 covariance matrix and
perform Eigen-decomposition on it while we have 32×32 patches as observations.
It is not a small storage and computational burden for real time trackers.

By combining the conventional incremental subspace learning method and
the mechanism of probabilistic admission and rejection, we propose a robust
incremental subspace learning in this paper. Nevertheless, we do not select the
normalization of the data point by L2-norm to estimate admissible probabil-
ity and to update eigenvectors and eigenvalues, as same as [10]. We define the
ΣD

j=1ŷ
2
ij

ΣK
j=1|Uj ŷi|2

as a measure to estimate acceptable probability. Once a new sample

is accepted, it would be process by conventional incremental subspace learning
as the same in [1]. Such a method has a theoretical performance guarantee under
the noisy case. For instance, in [10] the strategy works well even in the situa-
tion of 30% outlier fraction in the experiment, while the online PCA fails in the
situation of 5% outlier fraction.

Algorithm 1 Robust Incremental Subspace Learning

Input: Data Sequence [y1, ..., yb] ∈ RD×b,buffer size b, eigenvectors U ∈ RD×K ,
eigenvalues Σ ∈ RD×D and the mean vector I ∈ RD.
Output: updated eigenvectors U ′, eigenvalues Σ′ and the mean vector I ′.
Initialization: 1) y’ = []

repeat
a) Centering the data point as ŷi = yi − I;
b) Estimating the energy of data point as ei = ΣD

j=1ŷ
2
ij

c) Calulate the variance of yi along the direction eigenvectors U : θi = ΣK
j=1|Uj ŷi|2

d) Accept yi with probability θi/ei
e) If yi is accepted, y′ = [y′ ŷi]

until i > b
2) Perform incremental subspace learning [1] on y′ and obtain new eigenvectors U ′,
eigenvalues Σ′ and the mean vector I ′.
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(a) Occlusion1 (b) Occlusion2

(c) Caviar1 (d) Caviar2

(e) Car11 (f) Car4

(g) Singer (h) DavidInDoor

(i) Deer (j) Jumping

(k) Legend

Fig. 2. Sample tracking results on ten challenging image sequences. This figure demon-
strates the results of the IVT, L1 tracker, PN Tracker, VTD, MIL, Frag Tracker and
the proposed method.

4 Experiments

Speed The proposed method is implemented in both MATLAB and C. The
MATLAB versions runs at 10 fps on an Air-Mac with Core i5 1.86GHZ CPU
and 4GB memory, and the C version runs at 25-30 fps on Xeon E5305 CPU and
16GB memory (Tab .1). Please note that, our C version is single thread, and
other comparison methods are usually on multi-thread (Matlab’s default matrix
operation option).

Dataset We evaluate the proposed tracker against ten state-of-the-art algo-
rithms qualitatively and quantitatively, using the source codes provided by the
authors for fair comparisons, including the IVT [1], FragTrack(FT) [11], MIL-
Track [12], VTD [13], PN [14], TLD [15], APGL1 [6], ASLSA [16], MTT [17],
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Table 1. Comparison of computational costs

Method L1APG ONNDL OSPT ASLS Ours (C Version)

FPS 14.5 1.4 4.7 1.3 25

ONNDL[7], OSPT [8], SCM [18], and LSAT [19]. In the evaluation, we use fif-
teen challenging image sequences from prior works [1, 3, 12, 13, 20] and CAVIAR
dataset. The challenging factors of these sequences include partial occlusion,
background clutter, motion blur, illumination and pose variation.

Experimental setting For each sequence, the initial location of the target
object is manually labelled. For the sake of representation based on robust in-
cremental subspace learning, each image observation is normalized to 32 × 32
pixels patch and 16 eigenvectors are selected in all experiments. As the trade-off
between computational efficiency and effectiveness, 600 particles are used and
the incremental subspace learning updates parameters every 5 frames. The noisy
term threshold λ is set to 0.1 to all experiments.

4.1 Qualitative Evaluation

All the sequence images in our experiment are simulating situations of three
categories: heavy occlusion, illumination change and fast motion. With limited
space available, we only give a qualitative comparison as shown in Fig. 2 with
some key frames of ten sequences.

For the situation under heavy occlusions, such as Occlusion1 sequence that
the face is occluded by a magazine significantly [11], our approach, FragTrack
and L1 methods perform better as shown in Fig. 2(a) due to taking partial
occlusion into account. Before the magazine covers the face, all trackers do a
fine job. However, after that many of them only track the face inaccurately.
In Occlusion2 sequence that simulates a more complex situation by appearing
occlusion and in-plane rotation at the same time. As shown in Fig. 2(b), although
all tracker work well in the partial occlusion at about frame 150. They fail in
the situation combining in-plane rotation and partial occlusion at about frame
500. Carviar1 and Caviar2 are surveillance videos which are challenging as
they contain scale change, partial occlusion and similar target. The L1 and IVT
trackers drift away from the target at frame 225 in Fig. 2(d) or fail totally at
frame 125 in Fig. 2(c) after it is occluded by a similar object. Our method is
succeeded in solving the challenges.

For the situation under illumination change, such as Car4 in which the illu-
mination changes abruptly due to the shallow of entrance and exit of a tunnel.
All tracker work well before the car enters the tunnel at about frame 160 in
the Fig. 2(f). However, after that only our method and IVT can track the car
accurately and others track the target with drift or miss the target totally. In
Car11 sequences in where the road environment is very dark with background
light, we notice the IVT approach and the proposed method perform better than
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the other methods whereas the other methods drift away when the abrupt illu-
mination change occurs (e.g frame 200 in Fig. 2(e)) or when the similar objects
are close to the target (e.g frame 300 in Fig. 2(e)). In DavidIndoor sequence,
recorded in an indoor environment, we need to track a moving face with illu-
mination, scale and out-plane rotation changes. Most methods drift from frame
160 in Fig. 2(h) because of out-plane rotation . But some of them can recover
this after several frames. In Singer sequence, complicated illumination changes
make the tracking task more difficult. Our tracker is able to track the target
more precisely than others as shown in Fig. 2(g).

For the fast motion situation, such as Deer sequence in which the target is a
running deer with rapid changes in appearance, our method and VTD method
work better than other methods. In Jumping sequence, the trackers have to face
the challenge of appearance change caused by motion blur. The MIL, PN tracker
and the proposed method can track the target even the target become blurred.

(a) Occlusion1 (b) Occlusion2 (c) Caviar1

(d) Caviar2 (e) Car4 (f) Car11 (g) Singer

(h) Deer (i) Jumping (j) DavidInDoor

(k) Legend

Fig. 3. Quantitative Comparison between the Average Center Error among Different
Methods in 10 Datasets
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Table 2. Average center location error. The best three results are shown in red, blue
and green fonts seperatively.

Sequence FT IVTONNDLVTDTLDAPGL1MTTLSAT SCMASLASOSPTOurs

Occlusion1 5.6 9.2 5.0 11.1 17.6 6.8 14.1 5.3 3.2 10.8 4.7 5.3
Occlusion2 15.5 10.2 8.6 10.4 18.6 6.3 9.2 58.6 4.8 3.7 4 3.5

Caviar1 5.7 45.2 3.2 3.9 5.6 50.1 20.9 1.8 0.9 1.4 1.7 1.4
Caviar2 5.6 8.6 4.4 4.7 8.5 63.1 65.4 45.6 2.5 62.3 2.2 2.4
Caviar3 116.1 66 63.7 58.2 44.4 68.6 67.5 55.3 2.2 2.2 45.7 3.2
DavidOut 90.5 53 53.3 61.9 173 233.4 65.5 101.7 64.1 87.5 5.8 7.9
DavidIn 148.7 3.1 6.0 49.4 13.4 10.8 13.4 6.3 3.4 3.5 3.2 3.9
Singer1 22 8.5 9.3 4.1 32.7 3.1 41.2 14.5 3.7 5.3 4.7 3.5

Car4 179.8 2.9 6.0 12.3 18.8 16.4 37.2 3.3 3.5 4.3 3 3.2
Car11 63.9 2.1 1.4 27.1 25.1 1.7 1.8 4.1 1.8 2 2.2 1.5
Deer 92.1127.5 8.3 11.9 25.7 38.4 9.2 69.8 36.8 8 8.5 10

Football 16.7 18.2 19.6 4.1 11.8 12.4 6.5 14.1 10.4 18 33.7 7
Jumping 58.4 36.8 79.1 63 3.6 8.8 19.2 55.2 3.9 39.1 5 4.8

Owl 148141.4 27.8 86.8 8.2 104.2 184.3 110.7 7.3 7.6 47.4 6.2
Face 48.8 69.7 29.5141.4 22.3 148.9 127.2 16.5125.1 95.1 24.1 12.3

Average 67.8 40.2 21.7 36.7 28.6 51.5 45.5 37.5 18.2 23.4 13.1 5

4.2 Quantitative Evaluation

There are two different evaluation for our quantitative evaluation: the difference
between the predicated and the ground truth center locations, and the overlap
rate with ground truth. The results are summarized in Tab. 2 and Tab. 3, re-
spectively. The Tab. 2 reports the average center location errors in pixels, where
the value smaller the result more accurate. Given the tracking result of each
frame Rt and the corresponding ground truth RG, the overlap rate is defined as
area(RT∩RG)
area(RT∪RG) . Tab. 3 reports the average overlap rates, where the value larger the

result more accurate. For each video sequence (i.e., each row), we show the best
result in red, second best in blue, third best in green. We also report the central-
pixel errors and the overlap rates frame-by-frame for each video sequence in
Fig. 3 and Fig.4 respectively. In terms of the overlap rate, our method is always
among the best three in 13 of the 15 sequences. With respect to the central-
pixel error, our method is among the best two in 13 of the 15 sequences. For the
other two sequences, the gaps are quite small. We believe they can be negligible
in practical applications. Looking at the overall results. Our algorithm achieves
the lowest tracking errors in the most of all sequences, and archives the highest
overlap rate.

5 Conclusion

In this paper, we propose a robust incremental visual tracking method which
take probabilistic admission into account for observation model updating and
take partial occlusion into account for object tracking. Either robust incremental
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(a) Occlusion1 (b) Occlusion2 (c) Caviar1

(d) Caviar2 (e) Car4 (f) Car11 (g) Singer

(h) Deer (i) Jumping (j) DavidIndoor

(k) Legend

Fig. 4. Quantitative Comparison between the Overlap Rates among Different Methods
in 10 Datasets

Table 3. Average overlap rate. The best three results are shown in red, blue and green
fonts seperatively.

Sequence FT IVT ONNDL VTD TLD APGL1 MTT LSAT SCM ASLAS OSPT Ours

Occlusion1 0.90 0.85 0.89 0.77 0.65 0.87 0.79 0.90 0.93 0.83 0.91 0.89
Occlusion2 0.60 0.59 0.54 0.59 0.49 0.70 0.72 0.33 0.82 0.81 0.84 0.82

Caviar1 0.68 0.28 0.67 0.83 0.70 0.28 0.45 0.85 0.91 0.90 0.89 0.89
Caviar2 0.56 0.45 0.46 0.67 0.66 0.32 0.33 0.28 0.81 0.35 0.71 0.80
Caviar3 0.13 0.14 0.13 0.15 0.16 0.13 0.14 0.58 0.87 0.82 0.25 0.85

DavidOut 0.39 0.52 0.71 0.42 0.16 0.05 0.42 0.36 0.46 0.45 0.77 0.74
DavidIn 0.09 0.69 0.56 0.23 0.5 0.63 0.53 0.72 0.75 0.77 0.76 0.78
Singer1 0.34 0.66 0.58 0.79 0.41 0.83 0.32 0.52 0.85 0.78 0.82 0.82

Car4 0.22 0.92 0.88 0.73 0.64 0.7 0.53 0.91 0.89 0.89 0.92 0.91
Car11 0.09 0.81 0.82 0.43 0.38 0.83 0.58 0.49 0.79 0.81 0.81 0.84
Deer 0.08 0.22 0.60 0.58 0.41 0.45 0.6 0.35 0.46 0.62 0.61 0.59

Football 0.57 0.55 0.44 0.81 0.56 0.68 0.71 0.63 0.69 0.57 0.62 0.69
Jumping 0.14 0.28 0.06 0.08 0.69 0.59 0.3 0.09 0.73 0.24 0.69 0.65

Owl 0.09 0.22 0.46 0.12 0.6 0.16 0.09 0.13 0.79 0.78 0.48 0.79
Face 0.39 0.44 0.56 0.24 0.62 0.14 0.26 0.69 0.36 0.21 0.68 0.76

Average 0.35 0.51 0.56 0.5 0.51 0.49 0.45 0.52 0.74 0.66 0.72 0.79
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subspace method or outliers detection for observations didn’t introduce new
computational burden. Thus they are positive to make the method be real time.
Both quantitative and qualitative evaluations on challenging image sequences
demonstrate that the proposed tracking method outperforms several state of
the art methods. In the future work, the λ in Eq. 10 is supposed to be measured
dynamically according to the real scenes.

Acknowledgement. The authors would like to thank the anonymous review-
ers for constructive comments that helped in improving the quality of this
manuscript and Dr. NaiYan Wang for useful discussions.
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